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We investigate the phenomena of chaos synchronization and efficient signal transmission in a physical-
ly interesting model, namely, the Van der Pol-Duffing oscillator. A criterion for synchronization based
on asymptotic stability is discussed. By considering a cascaded synchronization system, we investigate
the possibility of the secure communication of analog signals.

PACS number(s): 05.45.+b

The concept of synchronized chaos, introduced recent-
ly by Pecora and Carroll [1-3], allows for the possibility
of building a set of chaotic dynamical systems such that
their common signals are synchronized. This idea has in
fact been successfully tested in a variety of nonlinear
dynamical systems, including Lorenz equations, the
Rosseler system, phase-locked loops, hysteresis circuits,
Chua’s circuit, and so on [1-7]. The robustness of chaot-
ic synchronization suggests that it can be effectively used
in spread-spectrum communications in which the chaotic
signals can be ideally utilized to mask the information-
bearing signals. A method of transmitting signals in a
secure way through chaos synchronization has recently
been reported [8]. This has recently been experimentally
demonstrated in the case of Chua’s circuit [9]. Here, in
this report, we wish to discuss the method of transmitting
signals using chaos synchronization in a physically in-
teresting model, namely the Van der Pol-Duffing oscilla-
tor.

The physical realization of the Van der Pol-Duffing
oscillator circuit is shown in Fig. 1 [10]. This circuit
bears a close resemblance to that of Chua’s circuit [6,11]
in that the piecewise linear element of the latter is re-
placed by a cubic nonlinear element of the form
I(V)=aV +bV?> (a <0, b >0). Such a nonlinear element
can be physically constructed by using a set of diodes and
an operational amplifier [10,12].

By applying Kirchoff’s laws to the various branches of
the circuit of Fig. 1 and appropriately rescaling [10], the
following set of dynamical equations can be easily ob-
tained:

x=—v[x3—ax—y], (1a)
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FIG. 1. Circuit realization of the chaotic Van der
Pol-Duffing oscillator.
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z=By, (1c)

where an overdot denotes the operation d /dt. Here x, y,
and z correspond to the rescaled form of the voltage
across capacitor C;, the voltage across capacitor C,, and
the current through L, respectively. a, v, and f3 are the
rescaled circuit parameters [10]. A numerical simulation
of Eq. (1) with fixed values of v and a exhibits period-
doubling bifurcations leading to chaos as the parameter 8
is decreased from a large value [10]. If we choose the pa-
rameters as v=100, a=0.35, and 8=300, one observes a
double-band chaotic attractor as shown in Fig. 2(a).

In order to observe the synchronization behavior in
system (1), by following the approach of Pecora and Car-
roll [1,2], the system (1) is considered as a master, or drive
system. The slave, or response system, is chosen to have
an identical set of equations for y and z represented with
primed variables. However, the initial conditions on y
and z are not the same in general as those of y’ and z’
(response-system variables). Further, the response system
is chosen to have exactly the same x signal as that of the
drive system by feeding the latter to the former. Thus the
response system is taken to be of the form

x'=x, y'=x—y'—z', 2'=By’". (2)

Now considering the dynamics of the combined drive-
response system (1) and (2) with the same parametric
values for v, a, and B, we find that in spite of the
differences in initial conditions of (y’,z’) and (y,z) vari-
ables, the primed and unprimed systems do synchronize,
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FIG. 2. (a) Chaotic attractor projected on the x-y plane for
a=0.35, v=100, and B=300. (b) Synchronization of chaos be-
tween x —x'’ of Eq. (6).
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such that for t — o, (y —y’')—0and (z —z')—0. Similar
synchronization was observed with a “y” feedback from
the drive system. It was noticed, however, that the “z”
feedback failed to show synchronization.

Recently, a criterion based on the asymptotic stability
has been developed as a necessary and sufficient condition
for the synchronization of periodic and chaotic systems
[2,13]. One of the practical ways to establish this asymp-
totic stability of the subsystem is to find an appropriate
Lyapunov function [13]. Its use can be shown, at first by
considering this function in connection with the subsys-
tem given by Egs. (1b) and (1c), namely,

-1 —1
B O
The subsystem for the slave, or response system, is also
represented by the same equation (3) for the primed vari-

ables [Eq. (2)]. Now calling (y —y')=y* and (z —z')
=z*, we have
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Now, if we consider the Lyapunov function,
E=1(By*+z*?+By**+(1+B)1z**], (5)

then
E=By*+z*)(By*+z*)+By*yp*+(1+B)z*z*
=—B(y*?>+z*?)<0 (8>0).

The equality sign applies only at the origin; therefore the
subsystem [(1b) and (1c)] is globally asymptotically stable
[13]. Thus the drive [Egs. (1b) and (lc)] and response
[Eq. (2)] systems eventually synchronize.

One may actually have a cascade of response systems
[3]. Let us assume that our drive system is represented
by Eq. (1) and that the first response system is represent-
ed in terms of the variables y’ and z’ driven by the origi-
nal x(¢) from the drive [Eq. (2)]. In addition, we can
have another response system consisting of the variable
x'" and driven by the y’ variable [3]. The total cascade
system of equations is represented in the following
manner:

Drive,

i=—v[x3—ax —y], (6a)

y=x-—-y-—z, (6b)

2=py ; (6¢)
response 1,

y'=x—y'—z', (6d)

Z'=By’; (6€)
response 2,

X"=—=y[(x"P—ax")—y']. (3]

If all the response systems are synchronized, then x''(#) is
identical to the drive signal x (), even if the drive system
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(6) exhibits chaotic behavior. If one varies a parameter in
the drive or response systems, then x''(¢) will not be the
same as x (¢). A synchronized chaotic behavior which ex-
ists between x(¢) and x''(¢) for «=0.35, v=100, and
B=300 is shown in Fig. 2(b).

In the following, we focus on the use of a synchroniz-
ing chaotic signal, in which the above synchronized
chaotic Van der Pol-Duffing system can be effectively
utilized as a vehicle to transmit analog signals in the con-
text of secure communications. By following the scheme
adopted by Oppenheim et al. [8] and Kocarev et al. [9]
for our subsequent numerical analysis, we use the x(?)
signal of the drive system [Egs. (6a)—(6c)] as a noiselike
“masking signal” and s(z) as an information signal to be
transmitted in a secure way. Now let us consider the ac-
tual transmitted signal 7(#)=x (¢)+s(¢). The subsystem
or, response 1 [Egs. (6d) and (6e)], is now modified as

y'=r(t)—y'—z', (6d’)
Z'=By’. (6e”)

The second response system (response 2) is the (x’’) sub-
system driven by the signal y’, which is the same as that
represented by Eq. (6f). Now from Egs. (6a)—(6c), (6d’),
(6e'), and (6f) we have the following inhomogeneous
linear equation:

yr=s()—y*—z*, z*=pBy*. @)
By assuming the power level of the information bearing
signal s(#) to be significantly lower than that of the x (#)
signal and the solution x*=(x""—x) to be significantly
small with respect to s(¢), we see that s(z) can be
recovered from response system 2 as [9]

S()=r(t)—x"(t)=x(t)+s(t)—x""(¢)
=~sl(t) . (8)

We have numerically solved the cascade system of
equations (6a)-(6¢c), (6d’), (6e’), and (6f) simultaneously
with parameters a=0.35, v=100, and B=300. The
information-bearing signal s (¢) is assumed to be any one
of the following type: (i) s(z)=F sin(wt) (single tone,
F=0.02, =1.0); (i) s(z)=F sin(wt)[1+ f sin(Q¢)]
(amplitude-modulated wave, F =0.02, ©«=1.0, f=1.0,
and Q=0.2); and (iii) s (¢)=F sin[wt + f sin(Q¢)] (phase-
modulated wave, F =0.02, »=1.0, f =0.2, and Q=0.2).
From the numerical simulation results, the information
signal s!(¢) is recovered at the response system by adopt-
ing Eq. (8). Figures 3(a)-3(c) depict the power spectrum
of the information signal s(¢), the actual transmitted sig-
nal 7(¢) [=s(z)+x(2)], and the recovered signal s '(z) for
the above three different cases, respectively. As the
power level of s(¢) is significantly lower than that of the
x (t) signal, the component of signal frequency of s () is
not discernible or detectable in Figs. 3(a)(ii)—3(c)(ii) be-
cause of the chaotic (broadband) nature of the actual
transmitted signal r(z). Also, the quality of the
recovered signal s!(¢) is significantly comparable to that
of the original signal s(¢). In view of the typical broad-
band spectra, the chaotic signal x (¢) becomes an ideal
candidate for spread-spectrum communication applica-
tions [8,9].
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FIG. 3. (a) Power spectra of signals (i) s (¢)=F sin(wt?) (single tone, F =0.02, o= 1.0), (i) 7(¢), and (iii) s'(¢). (b) Power spectra of
signals (i) s (¢)=F sin(wt)[ 1+ f sin(Q¢)] (amplitude-modulated wave, F =0.02, ©=1.0, f =1.0, 2=0.2), (ii) 7(¢), and (ii) s(¢). (c)
Power spectra of signals (i) s (¢)=F sin[wt + f sin(Q?)] (phase-modulated wave, F =0.02, »=1.0, f =0.2, 2=0.2), (ii) #(¢), and (iii)

s(e).

In summary, we have numerically investigated the
synchronization aspects of the Van der Pol-Duffing os-
cillator. A criterion for synchronization of chaos, based
on the asymptotic stability has been discussed. By having
a cascade of response systems, we have shown that this
model can be effectively used to transmit a variety of ana-

log signals for secure or spread-spectrum communica-
tions.
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